1,360 research outputs found

    Probing millisecond pulsar emission geometry using light curves from the Fermi Large Area Telescope

    Full text link
    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of B-field lines, in the geometric context of polar cap (PC), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by TPC and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or TPC / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.Comment: 51 pages, 23 figures, 3 tables; low-resolution figures; accepted for publication by Ap

    Discovery of a Spin-Down State Change in the LMC Pulsar B0540-69

    Full text link
    We report the discovery of a large, sudden, and persistent increase in the spin-down rate of B0540-69, a young pulsar in the Large Magellanic Cloud, using observations from the Swift and RXTE satellites. The relative increase in the spin-down rate of 36% is unprecedented for B0540-69. No accompanying change in the spin rate is seen, and no change is seen in the pulsed X-ray emission from B0540-69 following the change in the spin-down rate. Such large relative changes in the spin-down rate are seen in the recently discovered class of 'intermittent pulsars', and we compare the properties of B0540-69 to such pulsars. We consider possible changes in the magnetosphere of the pulsar that could cause such a large change in the spin-down rate.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter
    • …
    corecore